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Crossover between ordinary and normal transitions in two dimensional critical Ising films
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We investigate two dimensional critical Ising films of widthL with surface fieldsH15HL in the crossover
between ordinary (H150) and normal (H15`) transitions. Using exact transfer-matrix diagonalization and
density matrix renormalization-group~DMRG! methods, we calculate magnetization profilesm(z), the excess
magnetizationG, and the analog of the solvation forcef solv as functions ofH1 for severalL. Scaling functions
of the above quantities deviate substantially from their asymptotic forms at fixed points for a broad region of
the scaling variableLH1

2;L/ l 1, wherel 1 is the length induced by the surface fieldH1. The scaling function for
u f solvu has a deep minimum nearLH1

251, which is about one order of magnitude smaller than its value at both
fixed points~the ‘‘Casimir’’ amplitude!. For weakH1 ( l 1.L) the magnetization profile has amaximumat the
center of the film, andf solv decays muchfaster thanL22. For strongerH1 (1, l 1,L), the magnetization has
two maximaat a distance; l 1 from the walls, and the solvation force decays muchslower thanL22. For L
@ l 1 the solvation force decays according to the universal power lawf solv;L22. The results of the approximate
DMRG method show remarkable agreement with the exact ones.@S1063-651X~99!00209-3#

PACS number~s!: 64.60.Fr, 05.50.1q, 68.35.Rh
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I. INTRODUCTION

It is now well established, both theoretically and expe
mentally, that the critical properties of systems such as m
nets, binary alloys, fluid mixtures or simple fluids, are mo
fied in the vicinity of a surface@1–3#. In general, each bulk
universality class of critical phenomena splits into seve
surface universality classes depending on whether the
dency to order in the surface is enhanced or de-enhan
compared to the bulk. The leading critical behavior of t
semi-infinite systems belonging to the particular surface u
versality class is described by the renormalization-gro
transformation fixed points of the surface enhancemen
the interactionsc, corresponding to the ordinary (c5`),
special (c50), and extraordinary (c52`) transitions, all
related to a vanishing surface external fieldH1 ~for example,
the surface is exposed to a vacuum!. In physical systems a
surface external field is usually present—for instance, in
ids the walls of the container attract particles. A surface fi
explicitly breaks the symmetry at the surface, inducing
dering in the surface layer, and the corresponding surf
universality class, the normal transition, is related to the
finitely strong surface fieldH1 and toc5` @4#. The shapes
of the order parameter~OP! profiles are the same when th
symmetry is explicitly or spontaneously broken at the s
face, provided that the symmetry breaking fields are in
nitely strong. Hence the normal and extraordinary transiti
are equivalent.

In this work we restrict our attention to ordinary and no
mal transitions, and the crossover between them. This
corresponds, for example, to fluids or binary fluid mixtur
in contact with various surfaces~various H1) and to the
semi-infinite Ising systems. Sufficiently close to the critic
point the physical quantities are described by scaling fu
tions. If the length scale is set to the bulk correlation len
jb , then the scaling variable related to the surface can
PRE 601063-651X/99/60~3!/2887~10!/$15.00
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chosen asH1t2D1
ord

, wheret5(T2Tc)/Tc , with T denoting
temperature andTc its critical value, andD1

ord is the surface
critical exponent@2#. For t→0 the scaling variable tends t
its fixed point value, and the scaling functions assu
asymptotic forms corresponding to the respective fixed po

@4#. The scaling variableH1t2D1
ord

, taken to an appropriate
power, represents the ratio betweenjb and the lengthl 1

5H
1
2n/D1

ord

induced by the surface fieldH1 (n has its stan-
dard meaning!. The asymptotic critical region of each su
face universality class corresponds to this ratio going to` or
0. For a mesoscopic or macroscopicjb this means physically
that l 1 is either microscopic or macroscopic but orders
magnitude larger than the bulk correlation length, resp
tively, and changing the surface fieldH1 is irrelevant for the
behavior of the studied quantities. This is the physical rea
for the universality. Accordingly, there have been numero
theoretical efforts to investigate the individual surface u
versality classes. However, experiments are generically
carried out at the fixed points, and for systems with weakH1
the lengthl 1 can be one or two orders of magnitude larg
than the molecular size. On a mesoscopic length scale the
may depend on whether the distance from the surfacez is
smaller, comparable to or larger thanl 1. The shape of the OP
can influence other physical quantities. Thus in the regime
l 1 /jb5O(1) the behavior of the critical system is no long
universal in the sense that it depends on the strength ofH1
and so developing a detailed understanding of the cross
region between the fixed points is important.

Recently, for semi-infinite Ising-like systems in the cros
over between the ordinary and the normal transitions, it w
found that the OP profile is a nonmonotonic function of t
distance from the surfacez. Close to the surfacem(z) in-
creases, and only for z. l 1 the universal ‘‘normal’’ fixed
point behavior, i.e., a decaying OP, occurs@5,6#. Moreover,
2887 © 1999 The American Physical Society
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2888 PRE 60A. MACIOL”EK, A. CIACH, AND A. DRZEWIŃSKI
it was pointed out that forjb; l 1 ~a weak surface fieldH1)
the amount of the adsorbed order as a function oft is de-

scribed by the power lawtb2D1
ord

@7#. This prediction agrees
very well with the recent experiments of Ref.@8#. Only much
closer to the critical point (jb@ l 1) does a crossover to th
universal power lawtb2n take place. This particular behav
ior is related to the role played by the lengthl 1 which has
been given a physical interpretation as an approximate
tance from the surface up to which the OP responds line
to H1 @7#.

Motivated by the above results, we ask how the prese
of weak surface magnetic fields influences the behavio
theconfinedsystem near bulk criticality. In confined system
the relevant length scales, i.e., the width of the film,L, and
l 1, can be comparable to each other and much smaller
jb , corresponding to the universal, asymptotic critical b
havior which takes place whenjb@ l 1. In films of a mesos-
copic widthL the OP should depend sensitively on wheth
L is larger than, comparable to, or smaller thanl 1. To verify
this prediction we study the behavior of two dimension
~2D! Ising films as a function of the surface magnetic fie
H1. We concentrate on the competition between the len
scalel 1 and the width of the film,L, at bulk criticality. We
investigate the shape of the magnetization profile and
excess magnetization~adsorption! G, which, for fluids, can
be measured directly by volumetric measurements. Pr
ously these quantities were studied in Ising films only
strong surface fields acting on the first,H1, and theLth, HL ,
layers, i.e.,H1 ,HL56`, corresponding to the fixed points

An important thermodynamic quantity for a confined sy
tem is the solvation force, sometimes called the disjoin
pressure@9#. For a fluid this is the excess pressure~over the
bulk value fixed by the reservoir! arising from confinement
and can be measured directly by the surface force appa
or atomic force microscopes@10#. In the critical confined
systems this force becomes long ranged as a result of cri
fluctuations, a phenomenon which is a direct analog of
well-known Casimir effect in electromagnetism@11,12#.
Contrary to the usual dispersion forces, this force is g
erned byuniversal scaling functions. At fixed points these
scaling functions reduce to the universal Casimir amplitud
In recent years this so-called ‘‘critical Casimir effect’’ ha
attracted increasing theoretical interest, and many results
now available@12–18#. All of them are forH1 ,HL50 or
6`. To our knowledge, the scaling function in the crosso
regime between the ordinary and normal transition has
been studied. Comparing Casimir amplitudes ford52 Ising
films @see Eqs.~2.24! and ~2.25! below#, which are known
exactly for H15HL50 and H15HL56` @13,17# one
could come to the conclusion that the scaling function mi
be almost independent of the value ofH1 between these
fixed points, because Casimir amplitudes at these extr
values of the surface fields take the same value equal
2p/48. Our expectation is that when the length scalel 1
becomes comparable with the width of the film, a nontriv
dependence of the scaling function onH1 should occur.

We perform calculations using two methods: exa
transfer-matrix diagonalization and the density mat
renormalization-group~DMRG! method @19#. The DMRG
method was successfully employed for a series of two
s-
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mensional classical systems for which no exact solutions
available@20–23#. By implementing the exact diagonaliza
tion of the transfer matrix for 2D Ising films with arbitrar
surface fields, we are able to test more systematically
accuracy of the DMRG method, especially for the larg
widthsL'200. This test is important as we would like to u
the DMRG method to study 2D Ising films away from th
critical point including the case of nonzero bulk field.

The layout of the paper is as follows: in Sec. II we defi
the model, and give a survey of the most relevant res
from the theory of critical phenomena for semi-infinite a
finite systems in a slitlike geometry. In the subsequent s
tions we report our results. Section III analyzes the behav
of the magnetization profiles and the adsorptionG at bulk
criticality. The scaling functions for magnetization profile
andG are presented and discussed. The accuracy of the m
netization profiles from the DMRG method is discussed. R
sults for the solvation force at the bulk critical temperatu
Tc are presented in Sec. IV. The accuracy of the free ene
from the DMRG method is discussed and the scaling fu
tion of the solvation force is also shown and discussed. S
tion V summarizes our work and states our conclusions.

II. THEORY

We consider the 2D Ising film defined on the square l
tice L3M , M→`. The lattice consists ofL rows at spacing
a[1, so that the width of the film isLa5L. At each site,
labeled i , j , . . . , there is an Ising spin variable taking th
value s i561. We assume nearest-neighbor interactions
strengthJ, and a Hamiltonian of the form

H52JF (
^ i , j &

s is j2H1(
i

(1)

s i2HL(
i

(L)

s i G , ~2.1!

where the first sum runs over all nearest-neighbor pairs
sites, while the last two sums run, respectively, over the fi
and theLth rows. H1 and HL are the surface fields corre
sponding to direct, short range~‘‘contact’’ ! interactions be-
tween the walls and the spins in the film.H1 andHL are both
measured in units ofJ. We assume thatH15HL.0.

For the 2D Ising model in semi-infinite geometry the
exist two surface universality classes, since the boundar
one dimensional. There is only one relevant scaling fi
pertaining to the surface, the surface magnetic fieldH1 @2#.
The two universality classes areH150, the ordinary transi-
tion, andH15`, the normal transition, representing unstab
and stable fixed points of the renormalization-group flo
respectively@1,2#.

A. Semi-infinite systems

The scaling law for the OP profile in the vicinity of th
surface which favors one of the phases was given by Fis
and de Gennes@24#. In the critical regime,utu!1, the mag-
netization and the excess magnetization~adsorption! G have
the scaling forms:

m~z!5tbM0S z

jb
,yD , ~2.2!
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G[E
0

`

m~z!dr5tbjbG0~y!, ~2.3!

wherez is the distance measured normal to the surface,
cated atz50. b is the critical exponent describing the va
ishing of the bulk~OP! magnetization. These formulas ref
to t.0 and the bulk magnetic fieldH50. M0 andG0 are
universal scaling functions of the variable

y5t2nH1
n/D1;jb / l 1 ~2.4!

and l 15Al 1
H1

2n/D1. D1[D1
ord is the surface gap exponen

For the 2D Ising modelD151/2, and there exists analytica
expression forl 1 @25#; thus we can calculate the amplitud
Al 1

: Al 1
'0.909(1).

At the critical point andH150 ~ordinary transition! the
magnetization profile is zero for any distancez>0 from the
surface, and accordinglyG50. For H15` ~normal transi-
tion! m(z) starts fromm151 at the surface and then deca
to the bulk equilibrium value. At the critical point the O
profile takes the critical-point scaling form

m~z,H1 ,Tc!;z2b/nM0c~z/ l 1!, ~2.5!

with M0c(z) approaching a constant forz→`. Hence, at the
critical point,

m~z,H1→`,Tc!;z2b/n ~2.6!

for distancesz@ l 1. In the 2D Ising modelb/n51/8. ForT
ÞTc a crossover to the exponential decay;exp(2z/jb) takes
place at a distancez;jb from the surface. Fory tending to
the fixed pointy5`, G0(y)'const, andG diverges fort
→0 according to the universal power law

G;tb2n. ~2.7!

In the crossoverregion betweenH150 andH15`, the
OP profile steeply increases close to the surface to va
m(z)@m1 @5,6,26# and this is contrary to the mean-fie
~MF! expectation. At bulk criticality this growth occurs fo
z, l 1.

In the 2D Ising model the magnetization scaling functi
behaves in the following way at the critical point@27#:

M 0c;zy1ln z for z!1, ~2.8!

with y15D1
ord/n5(d2h i)/251/2, whereh i is the anoma-

lous dimension governing the decay of the correlations in
direction parallel to the surface@2#. Hence, forz! l 1, the
magnetization is described by

m~z,H1 ,Tc!;H1zkln~H1z!, ~2.9!

where k for the 2D Ising model isk5(D1
ord2b)/n51

2h'53/8. For a given value ofH1 the magnetizationm(z)
grows as;z3/8ln z for z< l 1. For z; l 1 the profile has a
maximum, and forz. l 1 the decay of the OP profile is cha
acteristic of that for the normal transition, i.e.,m(z)
'Az2b/n with the amplitudeA independent ofH1.

The ~Monte Carlo! literature values for the 3D Ising
model areb/n50.518(7)@28# andy1'0.73. The latter was
-

es

e

obtained by employing the scaling relationy11b1
ord/n5d

21 together with the Monte Carlo resultb1
ord/n'1.27 @5#.

Hence for the 3D Ising model the growth ofm(z) for z
! l 1 is described by a power law

m~z,H1 ,Tc!;H1zk, ~2.10!

with k'0.21. In the MF approximationD1
ord5b51/2, so

that k50. Thus, in this case one hasm(z→0)5m1 and a
monotonically decaying OP profile consistent with behav
~2.10!.

To understand this behavior note that at the ordinary tr
sition the surface remains paramagnetic atT5Tc , and hence
should respond linearly to a weak surface fieldH1. The same
should hold in the immediate neighborhood of a surface, t

m~z!;m1;H1 for z→0 and H1→0. ~2.11!

Equations~2.11! and~2.5! can be simultaneously satisfied
M 0c;zD1 /n, which leads tom(z);zk.

The mechanism leading to the increase of them(z) for
z, l 1 can be explained heuristically on the basis of the
havior of correlations in the near-surface region@6#. At T
5Tc the correlations decay algebraically. The decay
planes parallel to the surface is described byr 2d122hs,
wherer is the distance within the plane parallel to the su
face. The surface suppresses fluctuations, and the expo
hs depends on the distance from it and onz/r . Forz, l 1, that
is in the near-surface region,hs assumes its bulk valueh
~slow decay! if r !z and forr @z, hs5h i

ord.h ~fast decay!.
The effective range of correlationsj i may be identified with
the distance at which the crossover between the slow and
decay occurs,j i;z. A weak surface field is equivalent t
several boundary spins having a fixed~the same! orientation.
The magnetization induced by these spins at the distanz
from the surface is proportional toH1, to the correlation
function in the perpendicular direction, describing the dec

of the order,̂ m(0)m(z)&;z2d122h'
ord

, and to the correlated
area in the plane parallel to the surface,j i

d21 , which can be
influenced by a single surface spin. All these terms toget
give

m~z!;H1^m~0!m~z!&j i
d21;H1z12h'

ord
, ~2.12!

valid for z, l 1. Scaling relations@6# give, in turn, 12h'
ord

5k.

B. Finite-size scaling

For a film of finite width,m(z) andG, defined as in Eq.
~2.3! but with the upper limit of integration equal toL,
should have the following forms@29#:

m~z,H1 ,T,L !5tbMS z

L
;x,yD ~2.13!

and

G5tbLG~x,y!, ~2.14!

whereM and G are scaling functions,y is defined in Eq.
~2.4!, and
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x5Ltn. ~2.15!

With this choice of scaling variables,x;L/jb and y
;jb / l 1. At criticality the OP profile takes the scaling form
@2#

m~z,H1 ,Tc ,L !5z2b/nMcS z

L
;xyD , ~2.16!

or, equivalently,

m~z,H1 ,Tc ,L !5L2b/nNcS z

L
;xyD , ~2.17!

whereMc andNc are scaling functions, andxy;L/ l 1 is a
scaling variable appropriate forT5Tc . The adsorptionG
then has a form

G;L (n2b)/nGc~xy!, ~2.18!

where

Gc~xy!5E
0

1

dzz2b/nMc~z,xy!. ~2.19!

The shapes of the scaling functionsNc and Gc for the 2D
Ising film are known only at the fixed pointsy50 and y
5`. The exact analytic prediction for the entire profile
y5` was first given on the basis of conformal invarian
@30#, and then calculated from the exact transfer matrix
lution @31#. It is

m~z,H1 ,Tc ,L !5A@~L/p!sin~pz/L !#21/8, ~2.20!

so that the scaling function isNc(z,`)5B@sin(pz)#21/8,
whereA andB are constants.

The behavior ofG for y@1 is given by Eq.~2.18! with
Gc(xy) replaced by a constant,Gc(`), and in the limit ofy
→`, G;L (n2b)/n with (n2b)/n57/8 for the 2D Ising sys-
tem.

Until now the shape of the OP profiles, the adsorptionG,
and their scaling functions were not studied in full det
away from the fixed points. Some results for the OP profi
obtained from Monte Carlo simulations of a 2D Ising fil
with weak surface fields, were presented in Ref.@27#. This
work focused mainly on the analysis of the near-surface
havior of m(z), and the entire profile was shown only fo
H1 /kBT50.01 and for various temperatures below a
aboveTc . As far as the near-surface behavior is concern
it was found that whenl 1!L the z dependence of the mag
netization profile near the surface is the same as in the s
infinite systems, i.e.,m(z) grows asz3/8ln z for z, l 1. The
authors argue that the amplitude of Eq.~2.9! should be dif-
ferent from that in the semi-infinite system. This follow
from the exact results for films~finite L), which show that
the leading behavior ofm1(H1) as H1→0 is m1;H1ln L
rather thanm1;H1ln H1 for semi-infinite systems@32#. The
L-dependent prefactor in front of Eq.~2.9! was visible in the
results of the Ref.@27#.
t

-

l
,

e-

d,

i-

C. Solvation force

The free energy per site of the 2D Ising film with tw
surface fieldsH15HL can be written as

f ~L,T,H1!5 f b12 f w /L1 f * ~L !/L, ~2.21!

where f b is the bulk free energy,f w is the L-independent
surface contribution from each wall, andf * is the finite-size
correction to the free energy. The latter vanishes forL→`.
Such a term gives rise to the generalized force, which
analogous to the solvation force between the plates in c
fined fluids@9#:

f solv52~] f * /]L !H,T . ~2.22!

On the basis of the scaling argument, Fisher and de Gen
@24# predicted that, whenT5Tc and the bulk fieldH50, f *
has the form

f * 5A1,LkBTcL
2(d21) ~2.23!

as L→`. The constantA1,L depends on the choice of th
surface fields. Later, Privman and Fisher@33# argued that the
amplitudeA1,L should dependonly upon the relative signs o
H1 and HL . The slow, algebraic decay predicted by E
~2.23! is associated with the bulk critical fluctuations and
analogous to the Casimir effect. For the 2D Ising film t
amplitudesA1,L have been calculated exactly@13,17# for the
following choice of the surface fields:H15HL56`,0 and
H152HL56`. The leading-order decay forL→` of the
solvation force at these fixed points is the following:

f solv/kBTc52
p

48
L22, H15HL56`,0, T5Tc ,

~2.24!

f solv/kBTc5
23

48
pL22, H152HL56`, T5Tc .

~2.25!

From the general theory of critical finite-size scaling@29#
it follows that the solvation force for identical surface field
should take the following scaling form:

f solv5L2dF~x,y!. ~2.26!

At T5Tc the scaling relation takes the critical form

f solv5L2dFc~xy!. ~2.27!

Examining Eq.~2.27!, we see that it does not follow tha
the critical amplitudes are sufficient to describe the solvat
force in the whole range of the surface fieldsH1, i.e., in the
crossover betweenxy50 and xy5`. Only for xy→` or
xy→0 does the scaling function reduce to the critical amp
tudes.

For the 2D Ising model, where the critical exponenta
50 and the bulk free energy diverges logarithmically int as
T→Tc @32#, the appropriate form of the critical finite-siz
scaling of f solv should also contain a logarithmic term

f solv5L22F1~x,y!1L22ln LF2~x,y! ~2.28!
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where F1 and F2 are analytic functions ofx and y. The
scaling function for the solvation force was evaluated a
analyzed in a wide range of variablex in Ref. @14#, but only
in the casesH15HL56` andH152HL56`.

III. RESULTS FOR MAGNETIZATION PROFILES
AND ADSORPTION

The exact diagonalization of the transfer matrix for t
2D Ising film with arbitrary surface fields was performed
Maciołek and Stecki@34#, and the exact formula for the av
erage magnetizationml[^s l& across the film was given in
Ref. @34#. We use this expression to calculate numerica
but to machine accuracy, the magnetization profiles at
bulk critical point, for different surface fieldsH1.

The DMRG method for 2D classical systems is based
the transfer-matrix approach. It deals withL3` strip geom-
etries for which it provides a very efficient algorithm for th
construction of effective transfer matrices for largeL. Typi-
cal numerical calculations for the standard transfer-ma
method in the Ising systems are restricted to strips of ra
small widths (L<20), whereas the DMRG method has e
abled us to consider strips with a width up toL5200.

In our calculations we have used the finite-system vers
of the DMRG algorithm designed to perform accurate st
ies for finite size systems@35#. For more details see Re
@36#.

Calculations were performed for films of widthL between
100 and 200 at the bulk critical temperatureT5Tc , and for
surface fieldsH15HL ranging fromH151027 to 10. The
magnetization profiles obtained from the exact and appr
mate methods show remarkable agreement with a preci
of about one part in 106 or better. A selection of profiles
calculated for the film of widthL5200 atT5Tc is shown in
Fig. 1~a!. We can distinguish three different regimes ofH1
~a! strong H1, for which L/ l 1@1, ~b! intermediateH1

@L/ l 15O(1)#, and~c! very weakH1, for which L/ l 1!1.
~a! Strong surface field (microscopic l1). For the stronges

surface fields,H1 between ten and approximately 0.5, t
profiles take the familiary5` fixed point shape, i.e., the
decrease monotonically towards the center of the film. In
regime of H1 the length l 1 lies between l 1(H1510)
'0.009(1) and l 1(H150.6)'2.5(3). As H1 is reduced
from 10 to 0.6, the surface layer magnetizationm1 decreases
rapidly, whereas the magnetization in the central part of
film remains almost the same~see Fig. 2!. As a consequence
the adsorptionG also changes, although theH1 dependence
in this regime is very weak. ForH1'0.4,G starts to saturate
at a value which depends on the size of the systemL. Ac-
cording to the critical point finite-size scaling predictions
Eq. ~2.18!, G;L27/8 for largeH1. In Fig. 3 we show loga-
rithmic plot of the critical-point scaling functionGc(xy) @see
Eq. ~2.18!# of the adsorptionG. For the scaling variablexy
;L/ l 15LH1

2'20 000 in two dimensions the magnetizatio
profile is almost saturated, and coincides very well with
exact profile~2.20! of the limiting casexy→`. We can es-
timate, that for this value ofxy, Gc(xy) achieves its
asymptotic fixed point value.

~b! Intermediate surface field(1, l 1<L). The shapes of
the profiles change qualitatively forH1<0.5. Now the length
l 1 is equal to a few lattice spacings and, in agreement w
d
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the behavior found for the semi-infinite systems~see Sec.
II A !, the maximum order is shifted away from the walls
Two symmetric maxima appear atz; l 1 andz;L2 l 1—see
Fig. 1. AsH1 is lowered further, the maxima become flat an
extended and they move towards the center of the film. T
surface magnetization still decreases fairly rapidly with de
creasingH1, whereas the value of the magnetization at th
center changes only very slightly and forH150.2 it is al-
ready higher thanm1 ~see Fig. 2!. For l 1'L, i.e., H1
'0.07, the two separate maxima inml merge into one lo-
cated at the center of the film and the profilesincreasemono-
tonically toward the center of the film. In this range of sur
face fields the maximum order~the maximum magnetization!
crosses over from the surface to the center of the film, as
shown in Fig. 2. The coverageG also crosses over from

FIG. 1. ~a! Magnetization profilesml for the 2D Ising film of
width L5200 at zero bulk field and several values of the surfac
field H15HL : the top profile corresponds toH1510, then subse-
quently from the next to the top to the bottom profile:H150.5, 0.4,
0.3, 0.2, 0.14, 0.1, 0.07, 0.04, 0.01, and 0.001.~b! Scaling functions
of typical magnetization profiles in three regimes of the surfac
field H1 ~see Sec. III! corresponding to the scaling variablexy
5LH1

2. From top to bottom,xy520 000 and 50—strongH1 re-
gime; xy58—intermediateH1 regime; andxy50.5—very weak
H1 regime. The solid-line curve is the scaling function of the profil
at the fixed pointxy5` @Eq. ~2.20!#.
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being almost constant to being a rapidly decreasing func
of decreasingH1 ~see Fig. 3!.

~c! Weak and vanishing surface field( l 1@L). For very
weak surface fields, corresponding toL/ l 1!1, profiles in-
crease monotonically toward the center of the film, but n
the value of the magnetization both at the surface and in
middle of the film rapidly goes to zero withH1. For H1
'0.01 and below it is seen from the log-log plot@Fig. 2~b!#
that both m1 andmmid decrease linearly withH1. The linear
dependence ofm1 on H1 for weak surface field in the 2D
Ising strip is a known result@32#, but more careful inspection
of our results shows that there is a logarithmic correction
this linear dependence forl 1 greater thanL, i.e., m1 ,mmid
;H1ln H1. This logarithmic factor can be traced back to t
logarithmic singularity of the surface susceptibility. Mor
over, we find that in fact thewholeprofile depends linearly
~up to the logarithmic factor! on H1 whenl 1 becomes greate

FIG. 2. ~a! Surface magnetizationm1 ~triangles!, magnetization
in the center of the filmmmid ~circles!, and the maximum value o
the magnetization in the whole filmmmax ~stars! for the critical (T
5Tc) 2D Ising film of width L5200, plotted as a function ofH1.
The maximum value of the order parameter crosses over from b
at the surface to being at the middle of the system as the sur
field becomes weaker.~b! The same results as in~a! but now plotted
on a logarithmic scale to expose the linear dependence of the O
H1 for very weak surface fields.
n

e

o

thanL. This result agrees~up to the logarithmic factor spe
cific for the 2D Ising model! with the physical interpretation
of the lengthl 1 ~see Sec. I! as the approximate distance fro
the surface up to which the OP responds linearly to the s
face field H1; now l 1 is greater thanL, so that the whole
system responds linearly toH1.

The coverageG also decreases rapidly to zero. A line
dependence of the whole profile onH1 ~up to the logarithmic
factor! implies the same dependence ofG on H1. The linear
factor can be deduced from a logarithmic plot of the scal
function of G ~Fig. 3!, which shows the scaling function
Gc(xy5LH1

2) decaying according to a power law forxy
,0.03 with an exponent equal toD1 /n51/2. The linear be-
havior ofG for weak surface fields was assumed in Ref.@37#,
and is consistent with the measurements of the surface
sion for typical liquid binary mixtures near the critical en
point. TheL dependence of the adsorption in this regime
the surface fields follows immediately from the scaling for
of G @Eq. ~2.18!#, i.e., G;L (n2b)/n(LH1

n/D1)D1 /n

5L (n2b1D1)/n5L11/8 in 2D Ising systems.
In Fig. 1~b! we present scaling functions as defined by E

~2.17! of typical profiles corresponding to the scaling va
able xy50.5, 8, 50, and 20 000 together with the scali
function of the profile at fixed pointxy5`, given by Eq.
~2.20!. The scaling of the profiles calculated for widths of th
film from L5100 to 200 is excellent. For all the values ofxy
the curves collapse onto each other with very high accura
confirming that the scaling dominantL dependence for the
profiles isL2b/n. We have checked that forxy520 000 the
profile is almost saturated, and mimics the limiting casexy
→`. Therefore we could use it to fix the scaling constantA
in Eq. ~2.20!, equating the values of both profiles in th
middle of the strip. Because in the limitxy→` our first (L
51) and last (L5200) columns become the walls of fixe
spins, in order to obtain appropriate profiles we putL5199
in the exact formula~2.20!, corresponding to 198 unfixed
spins.

To assess the accuracy of the DMRG method, we ca

ng
ce

on

FIG. 3. Log-log plot of the scaling functionGc(xy) @obtained
using Eq.~2.18!# of the adsorptionG calculated for the critical (T
5Tc) 2D Ising films of different widthsL between 100 and 200. On
the logarithmic scale,Gc(xy) forms a straight line with a slope
equal to 1/2 forxy,0.03.
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late the relative difference between the profiles obtained
ing the DMRG and the exact diagonalization methods,

~ml
DMRG2ml

exTM!/ml
exTM, ~3.1!

for a few choices ofH1 corresponding to the three differen
regimes of the surface fields as described above. The a
racy of the DMRG method changes with the value ofH1 @see
Fig. 4~a!#. Generally, the larger the fluctuations of spins a
in the system, the larger the relative errors. The accurac
best in the regime~a!- for the strongest fields. As the value o
H1 decreases, the system approaches bulk criticality and
curacy decreases. DMRG calculations for a film of widthL
5200 andm532 states kept fixed in each iteration give
relative difference in Eq.~3.1! that is smaller than 1026 for
H1.0.1 (l 1 approximately less than 90!. When the surface
field decreases toH150.01 (l 1;9090) the error is around
331026.

FIG. 4. ~a! Reduced errors of the DMRG profiles@see Eq.~3.1!#.
Surface fieldsH1 from the bottom to the top areH150.8, 0.5, 0.1,
0.07, 0.04, and 0.01. ForH1,0.08 the error decreases approx
mately linearly with the surface field. The values of errors ha
been multiplied by 106. ~b! Reduced errors of the DMRG free en
ergy per spin@see Eq.~4.10!#. Inset: semilog plot of the same curv
to expose the logarithmic behavior of errors for largerH1. The
values of errors have been multiplied by 109.
s-

u-

is

c-

It turns out that accuracy of the DMRG calculations d
pends on the distance from the surfaces in a way tha
related to the fluctuations. In regime~a! the system is mos
strongly ordered near the surfaces and, accordingly, the e
is smallest there and has a maximum in the middle of
film. WhenH1 enters the regime of very weak surface fiel
the region of highest order shifts to the middle of the fi
and the accuracy is best there@see Fig. 4~a!#.

IV. RESULTS FOR THE SOLVATION FORCE

In the transfer-matrix approach the leading eigenvaluelL
of the transfer matrixTL ,

TLuvL&5lLuvL&, ~4.1!

gives the free energy per spin of an Ising film as

b f L52
1

L
ln lL . ~4.2!

The exact diagonalization for the 2D Ising film with surfa
fields H15HL gives @34#

lL5expS 1

2 (
i 50

L

g~v i !D , ~4.3!

coshg5cosh~v22v1!112cosv, ~4.4!

wherev252K, v152K* , K5bJ, b51/kBT, and the rela-
tion sinh 2K*sinh 2K51 definesK* (K). The anglesv i are
obtained from a certain transcendental equation which
pends on temperature. The caseT5Tc was not considered in
Ref. @34#, so we discuss it briefly below. At the bulk critica
temperaturev15v2[vc5 ln(11A2) andvk are L numbers
between 0 andp which are roots of the equation

tanLv5tan~d81f!~v!, ~4.5!

~d81f!~v!5Mv2~k21!p, ~4.6!

where

eid8(v)5e2vcS eiv2e2vc

eiv2e22vc
D 1/2

, ~4.7!

with the square roots being positive foreiv521 and

eif(v)5 i
Weiv~eiv2W21!

eiv2W
, ~4.8!

where

W5~coshvc11!~coshvc2cosh 2H1!. ~4.9!

d8(v) decreases monotonically fromp/2 at v50 to 0 at
v5p, whereasf(v) has a maximum betweenv50 and
v5p, and f(0)5f(p)5p. Examination of Eq. ~4.5!
shows that allk51, . . . ,L roots of Eq.~4.5! are real. They
can be calculated numerically but to machine accuracy. A
inverting of Eq. ~4.4! one obtains the quantitiesgk ,k

e
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51, . . . ,L and hence the free energy per spin. In the DMR
method the leading eigenvalue of theeffectivetransfer matrix
is calculated numerically.

We use both methods to calculate the free energy per
for various surface fields and widths of the film between 1
and 200. We find that in the caseL5200 the difference
between free energies per spin,

~ f DMRG2 f exact!/ f exact, ~4.10!

is a smooth curve as a function ofH1 with values smaller
than 731029. The error decreases, when the surface fi
goes down@see Fig. 4~b!#. Of course, keeping more state
(m532 here! would improve the accuracy, but the signifi
cant increase of calculation time has kept us from doing

In order to find the solvation force atT5Tc we first cal-
culate the excess free energy per unit areaf ex(L)[@ f (L)
2 f b#L @see Eq.~2.21!#, where f (L) is the free energy pe
spin for the whole system andf b is the bulk free energy pe
spin. f (L) is calculated from the leading eigenvalue of t
effective transfer matrix@Eq. ~4.2!#, whereasf b is known
exactly for the 2D Ising model atT5Tc and zero bulk field
@38# and its numerical value is approximately equal tof b;
22.109 651 1. Having valuesf ex(L012) and f ex(L0), we
approximate the derivative in Eq.~2.22! by a finite difference

f solv52~1/2!@ f ex~L012!2 f ex~L0!#. ~4.11!

We estimate that the difference betweenf solv calculated us-
ing the two approaches is of the order of 1027.

As another test of the DMRG method, we also calcul
the bulk free energy atTc . Keepingm548 states we per
form calculations of the free energy for films with widths u
to L5300. Next we extrapolate the bulk free energy usin
powerful extrapolation technique@39# and forL→` we ob-
tain the valuef b with the accuracy 10210.

We calculatef solv as a function ofH1 for L5100, 124,
150, 174, and 200. The solvation force is attractive for
values ofH1 we studied. For a givenL, f solv approaches the
~same! constant value forH1→` and H1→0, but between
these two valuesf solv exhibits a sharp maximum located at
small ~less than 0.1!, L-dependent value ofH1. Figure 5
presents this most interesting part of the crossover reg
The absolute value of the solvation force at the maximum
approximately one order of magnitude lessthan at H1
→`,0. For example, forL5100, f solv(H1510)'21.46
31025, whereasf solv

max(H1;0.1)'21.8331026.
In Fig. 6 we plotL23u f solvu as a function of the scaling

variablexy5LH1
2;L/ l 1. We obtain an excellent scaling, s

we can conclude that the logarithmic part of to the scal
functionF2 @see Eq.~2.28!# vanishes atTc . This agrees with
the results for the scaling function atTc obtained by Evans
and Stecki@14# in the special case ofH15HL56`. As
xy→0 and xy→` the scaling functionFc(xy)/kBTc @see
Eq. ~2.27!# approaches a constant value which, to good
curacy, is equal to2p/48—the critical Casimir amplitude
A1,L(H15H256`,0). The minimum ofuFcu is reached for
the scaling variablexymin'0.9, i.e., whenl 1 becomes ap-
proximately equal toL(L/ l 1'1).

From the form of the scaling function we can draw co
clusions about the behavior of the solvation force for vario
in
0

d

.

e

a

ll

e.
is

g

-

-
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strength of the confining walls, that is, for variousL/ l 1. The
universal,H1-independent behavior occurs forl 1→0 andl 1
→`. For our 2D system the two constant wings of the sc
ing function correspond tol 1,1023Lm and to l 1.103Lm ,
where byLm we denote the largest wall separation for whi
the solvation force is measurable. In practiceLm,103. In the
first caseH1 is very strong and the shape of the OP is qua
titatively independent ofH1, the boundary layer is saturate
and its magnetization ism151. For the second case of ver
weak or vanishingH1 the OP profile vanishes in the whol
slit. In these two cases the solvation force decreases acc
ing to the universal power law~2.24!. Between the two ex-
treme cases of very strong and very weakH1 two qualita-
tively different behaviors of the solvation force can b
observed. The first is for 1,L/ l 1,102 and the second is fo
1022,L/ l 1,1.

~a! 1,L/ l 1,102. The decay of the solvation force i
slowerthan in the universal regime. This slower decay of t
solvation force is associated with the OP profile having t
maxima at some distance from the boundary layers.

FIG. 5. The solvation force~in units of kBT) calculated for
critical 2D Ising films of widthsL5100 ~circles!, 124 ~squares!,
150 ~diamonds!, 174~triangles!, and 200~left closed triangles! as a
function of the surface fieldH1. The values of the solvation force
have been multiplied by 105.

FIG. 6. The modulus of the scaling function of the solvati
force Fc @Eq. ~2.27!# calculated for 2D Ising films of widths be
tween 100 and 200.
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~b! 1022,L/ l 1,1. In this regime the decay of the solva
tion force is faster than in the universal regime. The fast
decay of the solvation force is associated with the OP pro
depending linearly onH1, and having a single maximum i
the center of the film.

For the particular choice of the surface field, i.e., forH1
50.1, the universal power-law decay of the solvation fo
cannot take place in a measurable range of widths of the
as shown in Fig. 7. Around the minimum of the absolu
value of the scaling function in Fig. 6, i.e., for the scalin
argument between 0.3 and 3, we fitFc to a polynomial of the
tenth degree. From the fit we obtain the behavior of the s
vation force close to the minimum. Figure 8 shows this b
havior for particular choice of the surface fieldH150.1. For
100,L,300 the solvation force is almost independent of

FIG. 7. Log-log plot of the modulus of the solvation force as
function of the widthL for 2D Ising films subject to weak surfac
fields H15HL50.1. The solid line shows the universal fixed poi
decay2p/(48kBTc)L

22.

FIG. 8. The modulus of the solvation force~multiplied by 105)
for weak surface fieldsH15HL50.1 obtained from the fit of the
scaling function to a polynomial of the 10th degree. The fit is va
for 30,L,300. The long-dashed line shows the universal fixe
point decay2p/(48kBTc)L

22.
le

e
m

l-
-

.

V. SUMMARY AND CONCLUSIONS

We have studied how the magnetization profiles, the
sorption~the excess magnetization! and the ‘‘magnetic’’ sol-
vation force of 2D Ising films change at bulk criticality as th
surface fieldsH15HL are varied between 0 and̀. Our pre-
dictions that nonuniversal properties of critical phenomena
the crossover regime should manifest themselves particu
strongly in the confined systems have been fully confirm

The scaling functions of all the calculated quantities d
viate substantially from their asymptotic forms at the fix
points over a wide range ofH1 andL. This may be relevant
for experiments. The solvation force as a function ofL,
f solv(L), should depend on a particular choice of confini
walls for whichH1 is usually fixed. We predict that universa
decay of f solv(L), through the whole range of wall separ
tions L.1, can be found only for very strong surface fiel
such thatl 1,1022. For weakerH1 (1022, l 1,1) the sol-
vation force should decay in a slower fashion for 1,L
,102l 1, and for larger wall separations the crossover to
universal behavior should take place. The most interes
behavior is predicted for weak surface fields (1, l 1,102).
Then, for 1,L, l 1 the solvation force should decayfaster
than at the fixed points, and for larger wall separation
crossover to decayslower than L2d should occur. For still
larger wall separations,L.102l 1, another crossover to th
universal decay law should occur~in practice the solvation
force is not measurable for distances which are as larg
this!. Finally, for even weakerH1 ( l 1.102) the universal
decay should be first observed for 1,L,1022l 1, and for
larger wall separations the crossover to thefaster decay
should occur. Again, a second crossover to the slower de
should be found forL. l 1 ~this second crossover may not b
measurable in practice!. The third crossover to the power law
L2d occurs for very large wall separations,L.102l 1.104,
and we expect that this behavior is not measurable exp
mentally.

From the behavior of the solvation force one can dr
conclusions about the shape of the OP, since the faster d
is associated with a single maximum in the center of the fi
and the slower decay is associated with two maxima, eac
the neighborhood of each wall. Moreover, measurement
the solvation force can provide experimental estimate for
strength of the surface fieldH1, which cannot be measure
directly and, to our knowledge, by no other method. By me
suring the decay of the solvation force and knowingL one
can estimate, up to the amplitudeA1, the strength ofH1 on
the basis of the discussion described above, that is by c
paring l 1;H1

2n/D1 andL ~in dimensionless units!.
Our results should be applicable to various systems in

Ising universality class such as magnets, simple fluids,
nary alloys, and binary mixtures with short-ranged wall p
tentials. We expect a qualitatively similar scenario for t
crossover between the ordinary and normal transitions
three-dimensional confined systems of analogous geom
It is not obvious how this crossover manifests itself in t
systems with long-ranged wall potentials. In recent simu
tions of a Lennard-Jones fluid in a 3D slit with long-rang
wall potentials, the critical OP profiles showed features sim
lar to those we obtained for the weak fieldH1, provided the
amplitude of the attractive wall potentials was small@40#.

-
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These amplitudes may correspond to walls, weakly favor
one of the phases, but more systematic studies are need

Our predictions concerning the explicit dependence
measurable quantities, such as the adsorption and the s
tion force, on the strength of the surface fieldH1 could be
verified experimentally. For example, in the experiments
binary mixtures@8# in semi-infinite geometry the walls of th
container changed their preference from one componen
another as a function of time, the time scale of this cha
being of the order of days, so that the average surface
H1 during certain days was small. Such walls could be u
for studying the confined system.

Encouraged by the very good accuracy of the DMR
method at the bulk critical temperature and zero bulk field
determined by comparing with the exact results, we are c
rently using this method to study the same system away f
,
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n

ev
g
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f
va-
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the critical point, including nonzero bulk field. From ou
analysis of the errors it follows that the accuracy of th
method should be even better away from the critical poin
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Dudziński for several discussions. We are grateful to
Evans for a critical reading of the manuscript. This work w
partially funded by KBN Grant Nos. 2P03B10616 an
3T09A07316.
Ser.

A

a

.

@1# K. Binder, Phase Transitions and Critical Phenomenaedited
by C. Domb and J. L. Lebowitz~Academic Press, London
1983!, Vol. 8, p. 1.

@2# H. Diehl, Phase Transitions and Critical Phenomena, edited
by C. Domb and J. L. Lebowitz~Academic Press, London
1986!, Vol. 10, p. 75.

@3# H. Dosch,Critical Phenomena at Surfaces and Interfaces, ed-
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