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We investigate two dimensional critical Ising films of widthwith surface fielddH,=H, in the crossover
between ordinaryH;=0) and normal ;=) transitions. Using exact transfer-matrix diagonalization and
density matrix renormalization-gro@MRG) methods, we calculate magnetization profite), the excess
magnetizatiod”, and the analog of the solvation forég,, as functions oH, for severalL. Scaling functions
of the above quantities deviate substantially from their asymptotic forms at fixed points for a broad region of
the scaling variabIer~ L/14, wherel, is the length induced by the surface fiéld. The scaling function for
|fsonl has a deep minimum neaH2=1, which is about one order of magnitude smaller than its value at both
fixed points(the “Casimir” amplitude. For weakH, (I,>L) the magnetization profile hasnaaximumat the
center of the film, and,, decays mucliasterthanL ~2. For strongeH, (1<I,<L), the magnetization has
two maximaat a distance~|, from the walls, and the solvation force decays mstwerthanL 2. For L
>, the solvation force decays according to the universal powef lgy- L ~2. The results of the approximate
DMRG method show remarkable agreement with the exact §84963-651X99)00209-3

PACS numbeps): 64.60.Fr, 05.50+q, 68.35.Rh

I INTRODUCTION chosen a$i 17'_Agrd, wherer=(T—T,.)/T., with T denoting

It is now well established, both theoretically and experi-temperature and its critical value, and\2is the surface
mentally, that the critical properties of systems such as maggritical exponen{2]. For 7—0 the scaling variable tends to
nets, binary alloys, fluid mixtures or simple fluids, are modi-its fixed point value, and the scaling functions assume
fied in the vicinity of a surfac€1—3]. In general, each bulk asymptotic forms corresponding to the respective fixed point

ord

universality class of critical phenomena splits into severaf4]. The scaling variabléd,; 7 21, taken to an appropriate

surface universality classes depending on whether the tefsower, represents the ratio betweép and the lengthl,
dency to order in the surface is enhanced or de-enhanced _ o

compared to the bulk. The leading critical behavior of the™ M1 induced by the surface field, (v has its stan-
semi-infinite systems belonging to the particular surface unidard meaning The asymptotic critical region of each sur-
versality class is described by the renormalization-grougace universality class corresponds to this ratio going tor
transformation fixed points of the surface enhancement of. FOr a mesoscopic or macroscogijcthis means physically
the interactionsc, corresponding to the ordinarnyc€),  thatl; is either microscopic or macroscopic but orders of
special €=0), and extraordinaryg= —) transitions, all magnitude larger than the bulk correlation length, respec-
related to a vanishing surface external fielg (for example, tively, and changing the surface fiettt) is irrelevant for the
the surface is exposed to a vacuurim physical systems a behavior of the studied quantities. This is the physical reason
surface external field is usually present—for instance, in flufor the universality. Accordingly, there have been numerous
ids the walls of the container attract particles. A surface fieldheoretical efforts to investigate the individual surface uni-
explicitly breaks the symmetry at the surface, inducing or-versality classes. However, experiments are generically not
dering in the surface layer, and the corresponding surfacearried out at the fixed points, and for systems with widak
universality class, the normal transition, is related to the inthe lengthl; can be one or two orders of magnitude larger
finitely strong surface fieltH, and toc=c [4]. The shapes than the molecular size. On a mesoscopic length scale the OP
of the order parametdiOP) profiles are the same when the may depend on whether the distance from the surfaise
symmetry is explicitly or spontaneously broken at the sur-smaller, comparable to or larger thian The shape of the OP
face, provided that the symmetry breaking fields are infi-can influence other physical quantities. Thus in the regime of
nitely strong. Hence the normal and extraordinary transitions; /é,=0(1) the behavior of the critical system is no longer
are equivalent. universal in the sense that it depends on the strength,of

In this work we restrict our attention to ordinary and nor- and so developing a detailed understanding of the crossover
mal transitions, and the crossover between them. This casegion between the fixed points is important.
corresponds, for example, to fluids or binary fluid mixtures Recently, for semi-infinite Ising-like systems in the cross-
in contact with various surface&arious H;) and to the over between the ordinary and the normal transitions, it was
semi-infinite Ising systems. Sufficiently close to the critical found that the OP profile is a nonmonotonic function of the
point the physical quantities are described by scaling funcdistance from the surface Close to the surfacen(z) in-
tions. If the length scale is set to the bulk correlation lengthcreases and only forz>1, the universal “normal” fixed
&y, then the scaling variable related to the surface can bpoint behavior, i.e., a decaying OP, occ{ss5]. Moreover,
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it was pointed out that foé,~1, (a weak surface fieléH,) mensional classical systems for which no exact solutions are
the amount of the adsorbed order as a functiorr @ de-  available[20-23. By implementing the exact diagonaliza-

o : . S ; ;
scribed by the power law? A% [7]. This prediction agrees t|or:c of tr}e Itc;ansfer matr|>t<)lfor 2D lIsing films with ar.bltrlia\ryh
very well with the recent experiments of RE8]. Only much ~ Surface fields, we are able to test more systematically the

closer to the critical point{,>1,) does a crossover to the accuracy of the DMRG. m_ethod, especially for the largest
universal power lawr®~ take place. This particular behav- widthsL~200. This test is important as we would like to use

o . the DMRG method to study 2D Ising films away from the
';r IS rglated tohthe_ rcilt_a played b.y the Iengtpwmch has _ critical point including the case of nonzero bulk field.
een given a physical interpretation as an approximate dis- g layout of the paper is as follows: in Sec. Il we define

tance from the surface up to which the OP responds linearly,o model, and give a survey of the most relevant results
to Hy [7]. from the theory of critical phenomena for semi-infinite and
Motivated by the above results, we ask how the presencnite systems in a slitlike geometry. In the subsequent sec-
of weak surface magnetic fields influences the behavior ofions we report our results. Section Il analyzes the behavior
the confinedsystem near bulk criticality. In confined systems of the magnetization profiles and the adsorptiorat bulk
the relevant length scales, i.e., the width of the filmand criticality. The scaling functions for magnetization profiles
l;, can be comparable to each other and much smaller thasndI" are presented and discussed. The accuracy of the mag-
¢, corresponding to the universal, asymptotic critical be-netization profiles from the DMRG method is discussed. Re-
havior which takes place whefy>1;. In films of a mesos- sults for the solvation force at the bulk critical temperature
copic width L the OP should depend sensitively on whetherT, are presented in Sec. IV. The accuracy of the free energy
L is larger than, comparable to, or smaller thanTo verify from the DMRG method is discussed and the scaling func-
this prediction we study the behavior of two dimensionaltion of the solvation force is also shown and discussed. Sec-
(2D) Ising films as a function of the surface magnetic fieldtion V summarizes our work and states our conclusions.
H,. We concentrate on the competition between the length

scalel; and the width of the filmL, at bulk criticality. We Il. THEORY
investigate the shape of the magnetization profile and the _ o _
excess magnetizatiofadsorption I', which, for fluids, can We consider the 2D lIsing film defined on the square lat-

be measured directly by volumetric measurements. Previice LXM, M—o. The lattice consists df rows at spacing

ously these quantities were studied in Ising films only fora=1, so that the width of the film ika=L. At each site,

strong surface fields acting on the first;, and thel.th, H , labeledi,j, ..., there is an Ising spin variable taking the

layers, i.e.H;,H =+, corresponding to the fixed points. value o;==*1. We assume nearest-neighbor interactions of
An important thermodynamic quantity for a confined sys-strengthJ, and a Hamiltonian of the form

tem is the solvation force, sometimes called the disjoining

pressurd9]. For a fluid this is the excess pressijoger the (1) (L)
bulk value fixed by the reservoiarising from confinement, H=-J 2 cricrj—le ai—HLZ oil, (2.
and can be measured directly by the surface force apparatus \BY : !

or atomic force microscopedlO]. In the critical confined
systems this force becomes long ranged as a result of criticathere the first sum runs over all nearest-neighbor pairs of
fluctuations, a phenomenon which is a direct analog of theites, while the last two sums run, respectively, over the first
well-known Casimir effect in electromagnetisfiil1,12. and theLth rows.H; andH_ are the surface fields corre-
Contrary to the usual dispersion forces, this force is govsponding to direct, short rand€contact”) interactions be-
erned byuniversal scaling functionsAt fixed points these tween the walls and the spins in the filsh; andH_ are both
scaling functions reduce to the universal Casimir amplitudesmeasured in units of. We assume thatl;=H >0.
In recent years this so-called “critical Casimir effect” has  For the 2D Ising model in semi-infinite geometry there
attracted increasing theoretical interest, and many results agxist two surface universality classes, since the boundary is
now available[12—-1§. All of them are forH;,H, =0 or  one dimensional. There is only one relevant scaling field
+ o, To our knowledge, the scaling function in the crossoverpertaining to the surface, the surface magnetic fi¢ld[2].
regime between the ordinary and normal transition has nothe two universality classes ake; =0, the ordinary transi-
been studied. Comparing Casimir amplitudesder2 Ising  tion, andH, =0, the normal transition, representing unstable
films [see Eqs(2.24 and (2.25 below], which are known and stable fixed points of the renormalization-group flow,
exactly for H;=H,=0 and H;=H =+« [13,17] one respectively[1,2].
could come to the conclusion that the scaling function might
be almost independent of the value f between these
fixed points, because Casimir amplitudes at these extreme
values of the surface fields take the same value equal to The scaling law for the OP profile in the vicinity of the
— m/48. Our expectation is that when the length scale surface which favors one of the phases was given by Fisher
becomes comparable with the width of the film, a nontrivialand de Gennef24]. In the critical regime| /<1, the mag-
dependence of the scaling function Bin should occur. netization and the excess magnetizatiadsorption I have

We perform calculations using two methods: exactthe scaling forms:
transfer-matrix diagonalization and the density matrix
renormalization-grougDMRG) method[19]. The DMRG — B z

. . m(Z) MO( ly) ’ (22)

method was successfully employed for a series of two di- &b

A. Semi-infinite systems
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(" obtained by employing the scaling relatign+ B8%"Yv=d
I'= JO M(z)dr=7£,Go(y), (23 _1 together with the Monte Carlo resyi®"y v~1.27[5].
Hence for the 3D Ising model the growth af(z) for z
wherez is the distance measured normal to the surface, lo<l, is described by a power law
cated az=0. B is the critical exponent describing the van-

ishing of the bulk(OP) magnetization. These formulas refer m(z,Hy,Te)~HZ", (2.10
to 7>0 and the bulk magnetic fieldd=0. M, andG, are _ o
universal scaling functions of the variable with «~0.21. In the MF approximation\;"==1/2, so
that k=0. Thus, in this case one has{z—0)=m, and a
y=7""H Z/Al’“ &lly (2.9 ?oné)tonically decaying OP profile consistent with behavior
2.10.

and [, =A, HI”/AI. AleTd is the surface gap exponent. .To understand this b_ehavior note thgt at the ordinary tran-
1 sition the surface remains paramagneti@ &T., and hence

should respond linearly to a weak surface figld The same

should hold in the immediate neighborhood of a surface, thus

For the 2D Ising model;=1/2, and there exists analytical
expression foil; [25]; thus we can calculate the amplitude
A|1: A|l%090q1)

At the critical point andH;=0 (ordinary transition the m(z)~m;~H; for z—0 and H;—0. (2.1)
magnetization profile is zero for any distarce0 from the
surface, and accordingly=0. ForH,;= (normal transi- Equations(2.11) and (2.5 can be simultaneously satisfied if
tion) m(z) starts fromm, =1 at the surface and then decays M oc~¢*1'", which leads tan(z) ~z*.
to the bulk equilibrium value. At the critical point the OP ~ The mechanism leading to the increase of thi) for

profile takes the critical-point scaling form z<I; can be explained heuristically on the basis of the be-
havior of correlations in the near-surface regi@. At T
M(z,H1,Te)~2 A" Moe(214), (25 =T, the correlations decay algebraically. The decay in

i i planes parallel to the surface is described oy "2~ 7s,
Wl'th MOC('O approaching a constant fgr-. Hence, atthe  yherer is the distance within the plane parallel to the sur-
criteal poin face. The surface suppresses fluctuations, and the exponent
m(z,H;—»,T)~z A" (2.6) 7 depends on the distance from it andzdn. Forz<l, that

is in the near-surface regioms assumes its bulk value

for distances>1,. In the 2D Ising modefg/v=1/8. ForT  (Slow decayif r<zand forr>z, 7= 7> 7 (fast decay.

the fixed pointy=c0, Go(y)~const, andl’ diverges forr  decay occurs§~z. A weak surface field is equivalent to

—0 according to the universal power law several boundary spins having a fixgde samgorientation.
The magnetization induced by these spins at the distance
r~rv, (2.7  from the surface is proportional tbl;, to the correlation

function in the perpendicular direction, describing the decay

H — — ord
OPln thilcro?sovlerr_egmn betwei\erH o Othand Hfl—oo,tthe e the order{m(0)m(z))~z~9*2-7." and to the correlated
profile steeply increases close 1o the surface 10 valu€g, i e plane parallel to the surfaé%?l, which can be

m(z)>m, [5,6,26 and this is contrary to the mean-field . . .
(MF) expectation. At bulk criticality this growth occurs for ;ﬂiggenced by a single surface spin. All these terms together
z<l,.
In the 2D Ising model the magnetization scaling function _ d—1__ 1- 50
behaves in the following way at the critical poi&7]: m(z)~Hy(m(0)m(2))¢] Hizme, (219

ord

Mo~ 01ng  for (<1 2.9 valid for z<I,. Scaling relationg6] give, in turn, 1— 77
[0 ’ . _

with y,=AYYv=(d— 7))/2=1/2, wherep, is the anoma-

lous dimension governing the decay of the correlations in the B. Finite-size scaling

direction parallel to the surfaci]. Hence, forz<l,, the

el ) For a film of finite width,m(z) andI’, defined as in Eq.
magnetization is described by

(2.3 but with the upper limit of integration equal th,

m(z,Hy,To)~H,z8IN(H,2), 2.9 should have the following formg29]:

where « for the 2D lIsing model isk= (A%~ B)/v=1 m(z,H,,T,L)= BM(E;x,y) (2.13
— 7, =3/8. For a given value afl; the magnetizatiom(z) L
grows as~z¥4nz for z<l;. For z~I; the profile has a
maximum, and foz>1, the decay of the OP profile is char-
acteristic of that for the normal transition, i.em(z) I'=7PLG(x,y), (2.14
~Az P with the amplitudeA independent of;.

The (Monte Carlg literature values for the 3D Ising where M and G are scaling functionsy is defined in Eq.
model areB/v=0.518(7)[28] andy,~0.73. The latter was (2.4), and
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x=L7".

(2.19

With this choice of scaling variablesx~L/&, and y

~&pll4. At criticality the OP profile takes the scaling form

[2]
z
m(z,Hy,Te,L)=2"#" M, E;xy), (2.16
or, equivalently,
z
m(z,Hl,Tc,L)=L—B/v/\/c(r;xy), (2.17

where M. and NV, are scaling functions, andy~L/I; is a
scaling variable appropriate fof=T.. The adsorption
then has a form

I~LU=AG (xy), (2.18

where

1
Qc(Xy)Ifo dgg P Mo(L,xy). (2.19

The shapes of the scaling function§ and G, for the 2D
Ising film are known only at the fixed pointg=0 andy

=00, The exact analytic prediction for the entire profile at
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C. Solvation force

The free energy per site of the 2D Ising film with two
surface fieldH,=H, can be written as

f(L,T,Hy)="fp+2f,/L+f*(L)/L, (2.21
where fy, is the bulk free energyf,, is the L-independent
surface contribution from each wall, afid is the finite-size
correction to the free energy. The latter vanisheslLfesx.
Such a term gives rise to the generalized force, which is
analogous to the solvation force between the plates in con-
fined fluids[9]:

fson=—(aF* /L)y 1. (2.22
On the basis of the scaling argument, Fisher and de Gennes
[24] predicted that, wheii =T, and the bulk fieldH=0, f*
has the form

f* :Al'LkBTCLi(dil) (223
asL—«. The constan®\;, depends on the choice of the
surface fields. Later, Privman and Fish&8] argued that the
amplitudeA;, should dependnly upon the relative signs of
H, and H_ . The slow, algebraic decay predicted by Eg.
(2.23 is associated with the bulk critical fluctuations and is
analogous to the Casimir effect. For the 2D Ising film the
amplitudesA;; have been calculated exacfly3,17] for the
following choice of the surface field$i;=H, = *0,0 and
H,=—H_ = *=. The leading-order decay fdr— o« of the

y=o0 was first given on the basis of conformal invariancesolvation force at these fixed points is the following:
[30], and then calculated from the exact transfer matrix so-

lution [31]. It is

m(z,Hy,Te,L)=A[(L/m)sin(7z/L)] 8 (2.20
so that the scaling function iV,(Z,%)=B[sin(m{)] 8,
where. 4 and B are constants.

The behavior ofl” for y>1 is given by Eq.(2.18 with
G:(xy) replaced by a constanf (), and in the limit ofy
—oo, T~L=AY with (v— B)/v=T7/8 for the 2D Ising sys-
tem.

Until now the shape of the OP profiles, the adsorpfign

and their scaling functions were not studied in full detail
away from the fixed points. Some results for the OP profiles,
obtained from Monte Carlo simulations of a 2D Ising film

with weak surface fields, were presented in R&f7]. This

work focused mainly on the analysis of the near-surface be-
havior of m(z), and the entire profile was shown only for

T -2
fSO|V/kBTC:__L ’ Hl:HL:iOO,O, T:TC,

48
(2.249
23
1Es‘.olv/kBTcz4—8771—727 Hi=—H =%, T=T,.
(2.25

From the general theory of critical finite-size scal{i29]
it follows that the solvation force for identical surface fields
should take the following scaling form:

fson= L_d}‘(x,y). (2.26
At T=T, the scaling relation takes the critical form
fson= Lid}—c(Xy)- (2.27

H,/kgT=0.01 and for various temperatures below and Examining Eq.(2.27), we see that it does not follow that
aboveT,. As far as the near-surface behavior is concernedthe critical amplitudes are sufficient to describe the solvation
it was found that wheh; <L the z dependence of the mag- force in the whole range of the surface fields, i.e., in the
netization profile near the surface is the same as in the sem¢rossover betweery=0 andxy=co. Only for xy—o or

infinite systems, i.e.m(z) grows asz¥8nz for z<l;. The
authors argue that the amplitude of Eg.9) should be dif-

ferent from that in the semi-infinite system. This follows

from the exact results for filméinite L), which show that
the leading behavior om;(H;) asH;—0 is m;~H,InL

rather thanrm; ~H;,In H, for semi-infinite system§32]. The
L-dependent prefactor in front of ER.9) was visible in the
results of the Ref{27].

xy—0 does the scaling function reduce to the critical ampli-
tudes.

For the 2D Ising model, where the critical exponent
=0 and the bulk free energy diverges logarithmicallyrias
T—T,. [32], the appropriate form of the critical finite-size
scaling off, should also contain a logarithmic term

foon=L 2F1(X,y)+ L AnLF,(X,y) (2.28
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where F; and F, are analytic functions ok andy. The 1.0
scaling function for the solvation force was evaluated anc
analyzed in a wide range of variabten Ref.[14], but only

in the casedd;=H, =+~ andH,;=—H = * o,

IlI. RESULTS FOR MAGNETIZATION PROFILES

A
AND ADSORPTION fw
EN 0.5 f \

The exact diagonalization of the transfer matrix for the

2D lIsing film with arbitrary surface fields was performed by rf
Maciotek and Steckj34], and the exact formula for the av- ﬁ
/’

erage magnetizatiom;=(a,) across the film was given in
Ref. [34]. We use this expression to calculate numerically,
but to machine accuracy, the magnetization profiles at th
bulk critical point, for different surface fieldd ;.
The DMRG method for 2D classical systems is based ot 0.0
the transfer-matrix approach. It deals witkx « strip geom-
etries for which it provides a very efficient algorithm for the
construction of effective transfer matrices for laidgeTypi-
cal numerical calculations for the standard transfer-matri
method in the Ising systems are restricted to strips of rathe 1
small widths { <20), whereas the DMRG method has en- 1.5 H
abled us to consider strips with a width uplte=200.
In our calculations we have used the finite-system versiol
of the DMRG algorithm designed to perform accurate stud®
ies for finite size systemf35]. For more details see Ref.
[36]. £ 10f
Calculations were performed for films of widthbetween
100 and 200 at the bulk critical temperatureT.., and for
surface fieldsH,=H, ranging fromH,;=10"" to 10. The
magnetization profiles obtained from the exact and approxi
mate methods show remarkable agreement with a precisic

of about one part in fDor better. A select|o_n of profl_les 0-50.0 02 04 06 0.8 1.0
calculated for the film of width. =200 atT=T, is shown in z/L

Fig. 1(a). We can distinguish three different regimestbf

(@ strong H4, for which L/I;>1, (b) intermediate H, FIG. 1. () Magnetization profilesn, for the 2D Ising film of
[L/I;=0(1)], and(c) very weakH, for whichL/l;<1. width L=200 at zero bulk field and several values of the surface

(a) Strong surface field (microscopig)l For the strongest field H;=H, : the top profile corresponds td, =10, then subse-
surface fieldsH; between ten and approximately 0.5, the quently from the next to the top to the bottom profit;= 0.5, 0.4,
profiles take the familiay=o fixed point shape, i.e., they 0.3,0.2,0.14,0.1, 0.07, 0.04, 0.01, and 0.001 Scaling functions
decrease monotonically towards the center of the film. In thi®f typical magnetization profiles in three regimes of the surface
regime of H; the length |, lies betweenl;(H;=10) field I2-|1 (see Sec. Il corresponding to the scaling varials
~0.009(1) andl;(H;=0.6)~2.5(3). As H, is reduced =LH1. From top to bottomxy=20000 and 50—strongi, re-
from 10 to 0.6, the surface layer magnetizatiopdecreases 9'Me: Xy==8—intermediatet, regime; anaxy=0.5—very weak
rapidly, whereas the magnetization in the central part of thtyl regime. Thg solid-line curve is the scaling function of the profile
film remains almost the sanieee Fig. 2. As a consequence, at the fixed poinky=—= [Eq. (2.20]
the adsorptior” also changes, although th®, dependence the behavior found for the semi-infinite systerfsee Sec.
in this regime is very weak. Fdi,~0.4,1 starts to saturate || A), the maximum order is shifted away from the walls.
at a value which depends on the size of the systerAc-  Two symmetric maxima appear at-1, andz~L —1,—see
cording to the critical point finite-size scaling predictions of Fig. 1. AsH, is lowered further, the maxima become flat and
Eq. (2.18, T~L~ "8 for largeH;. In Fig. 3 we show loga- extended and they move towards the center of the film. The
rithmic plot of the critical-point scaling functiofi(xy) [see  surface magnetization still decreases fairly rapidly with de-
Eq. (2.18] of the adsorptior”. For the scaling variablgy  creasingH,, whereas the value of the magnetization at the
~L/l;=LH?~20000 in two dimensions the magnetization center changes only very slightly and fbi;=0.2 it is al-
profile is almost saturated, and coincides very well with theready higher thanm,; (see Fig. 2 For |;~L, i.e., H;

exact profile(2.20 of the limiting casexy—«. We can es- ~0.07, the two separate maxima iim merge into one lo-
timate, that for this value ofxy, G.(xy) achieves its cated at the center of the film and the profilesreasemono-
asymptotic fixed point value. tonically toward the center of the film. In this range of sur-

(b) Intermediate surface fielfil<l,<L). The shapes of face fields the maximum ordéthe maximum magnetization
the profiles change qualitatively fét;<0.5. Now the length  crosses over from the surface to the center of the film, as is
[, is equal to a few lattice spacings and, in agreement wittshown in Fig. 2. The coveragE also crosses over from
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FIG. 3. Log-log plot of the scaling functiog(xy) [obtained
using Eq.(2.18] of the adsorptiod" calculated for the critical T
=T.) 2D Ising films of different widths. between 100 and 200. On
the logarithmic scaleG.(xy) forms a straight line with a slope
equal to 1/2 forxy<<0.03.

thanL. This result agreeéup to the logarithmic factor spe-
cific for the 2D Ising modeglwith the physical interpretation
of the lengthl; (see Sec.)las the approximate distance from
the surface up to which the OP responds linearly to the sur-
face fieldHq; now |, is greater tharl, so that the whole
system responds linearly td;.

The coveragd™ also decreases rapidly to zero. A linear
dependence of the whole profile &y (up to the logarithmic
. facton implies the same dependenceldobn H;. The linear
10 10 10 factor can be deduced from a logarithmic plot of the scaling
1 function of I' (Fig. 3), which shows the scaling function
G.(xy=LH?) decaying according to a power law fory
<0.03 with an exponent equal to, /v=1/2. The linear be-

107

FIG. 2. (a) Surface magnetizatiom, (triangleg, magnetization

in the center of the filmm,4 (circles, and the maximum value of . ) .
the magnetization in the whole filmm,,,, (starg for the critical (T havior of" for weak surface fields was assumed in R,

=T,) 2D Ising film of width L =200, plotted as a function df ;. and is consistent with the measurements of the surface ten-

The maximum value of the order parameter crosses over from being©n for typical liquid binary mixtures near the critical end-

at the surface to being at the middle of the system as the surfadeint. TheL dependence of the adsorption in this regime of
field becomes weakefb) The same results as {g) but now plotted the surface fields follows immediately from the scaling form
on a logarithmic scale to expose the linear dependence oftheOP @f I' [Eq. (2.18], ie., I'~ L(”_B)/V(LHilAl)Al“

H, for very weak surface fields. =L(»=B+ADIv=| 118in 2D |sing systems.

In Fig. 1(b) we present scaling functions as defined by Eq.
being almost constant to being a rapidly decreasing functio2.17) of typical profiles corresponding to the scaling vari-
of decreasingH, (see Fig. 3. able xy=0.5, 8, 50, and 20000 together with the scaling

(c) Weak and vanishing surface fie(t>L). For very  function of the profile at fixed poinky=, given by Eq.
weak surface fields, corresponding ltél,<1, profiles in- (2.20. The scaling of the profiles calculated for widths of the
crease monotonically toward the center of the film, but nowfilm from L= 100 to 200 is excellent. For all the valuesxf
the value of the magnetization both at the surface and in thtéhe curves collapse onto each other with very high accuracy,
middle of the film rapidly goes to zero withl;. For H;  confirming that the scaling dominaht dependence for the
~0.01 and below it is seen from the log-log p[&ig. 2(b)]  profiles isL~#/”. We have checked that fory=20000 the
thatboth m; andm,,q decrease linearly witli,. The linear  profile is almost saturated, and mimics the limiting cage
dependence ofn; on H; for weak surface field in the 2D —oo. Therefore we could use it to fix the scaling constant
Ising strip is a known resul82], but more careful inspection in Eq. (2.20, equating the values of both profiles in the
of our results shows that there is a logarithmic correction taniddle of the strip. Because in the limity— our first (L
this linear dependence fdy greater tharl, i.e., m;,Myq =1) and last [ =200) columns become the walls of fixed
~H4InH;. This logarithmic factor can be traced back to thespins, in order to obtain appropriate profiles we pat199
logarithmic singularity of the surface susceptibility. More- in the exact formula2.20, corresponding to 198 unfixed
over, we find that in fact thevhole profile depends linearly spins.

(up to the logarithmic factgron H, whenl; becomes greater To assess the accuracy of the DMRG method, we calcu-
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It turns out that accuracy of the DMRG calculations de-
pends on the distance from the surfaces in a way that is
related to the fluctuations. In reginte) the system is most

strongly ordered near the surfaces and, accordingly, the error
is smallest there and has a maximum in the middle of the
film. WhenH, enters the regime of very weak surface fields
the region of highest order shifts to the middle of the film
and the accuracy is best thdsee Fig. 4a)].

IV. RESULTS FOR THE SOLVATION FORCE

In the transfer-matrix approach the leading eigenvalue
of the transfer matrix | ,

0 . . . TV =N|VL), 4.1
0 50 100 150 200 vo=hv
@) l gives the free energy per spin of an Ising film as
6.8 1
ﬂfL:_Eln)\L. (42)

The exact diagonalization for the 2D Ising film with surface
fieldsH;=H, gives[34]

L
1
>\L=exp(52 y(w) |, (4.3
=0
coshy=coshv,—v;)+1—cosw, (4.9

wherev,=2K, v;=2K*, K=pJ, B=1kgT, and the rela-
tion sinh K*sinh X=1 definesk* (K). The anglesw; are
66 , , . , obtained from a certain transcendental equation which de-
) 0.2 0.4 0.6 0.8 1 pends on temperature. The case T, was not considered in
(b) H1 Ref.[34], so we discuss it briefly below. At the bulk critical
temperaturev,=v,=v.=In(1+ J2) andw, areL numbers
between 0 andr which are roots of the equation

FIG. 4. (a) Reduced errors of the DMRG profilesee Eq(3.1)].
Surface fielddH, from the bottom to the top and;=0.8, 0.5, 0.1,
0.07, 0.04, and 0.01. Fad,<0.08 the error decreases approxi- tanLw=tan(é' + ¢)(w), (4.5
mately linearly with the surface field. The values of errors have
been multiplied by 18 (b) Reduced errors of the DMRG free en-

ergy per spirisee Eq(4.10]. Inset: semilog plot of the same curve (8" +d)(w)=Mo=(k=1)m, 4.6
to expose the logarithmic behavior of errors for larder. The where
values of errors have been multiplied by®10
iw__ A2V 1/2

late the relative difference between the profiles obtained us- eiﬁ’(w):e—vc(ﬁ) (4.7)
ing the DMRG and the exact diagonalization methods, ev—e Ve

(MPMRE— mexTM) TV (3.1  with the square roots being positive fef”=—1 and
for a few choices oH; corresponding to the three different oy WEC(e WY 48
regimes of the surface fields as described above. The accu- € =1 elo_\W ' (4.8

racy of the DMRG method changes with the valudigf[see

Fig. 4@)]. Generally, the larger the fluctuations of spins areynere

in the system, the larger the relative errors. The accuracy is

best in the regiméa)- for the strongest fields. As the value of W= (coshv,+ 1)(coshv,—cosh H,). 4.9
H, decreases, the system approaches bulk criticality and ac-

curacy decreases. DMRG calculations for a film of witdth &' (w) decreases monotonically from/2 at =0 to 0 at
=200 andm=32 states kept fixed in each iteration give a w= 7, whereas¢(w) has a maximum betweea=0 and
relative difference in Eq(3.1) that is smaller than 1 for ~ w=, and ¢(0)=¢(w)=m. Examination of Eq.(4.5
H.>0.1 (I, approximately less than 90When the surface shows that alk=1, ... L roots of Eq.(4.5 are real. They
field decreases tbl;=0.01 (,~9090) the error is around can be calculated numerically but to machine accuracy. After
3x10°6. inverting of Eq. (4.4 one obtains the quantitiey, k
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=1, ... L and hence the free energy per spin. In the DMRG 0.0
method the leading eigenvalue of tbiectivetransfer matrix
is calculated numerically.

We use both methods to calculate the free energy per spit
for various surface fields and widths of the film between 100 05
and 200. We find that in the cade=200 the difference
between free energies per spin,

(fDMRG_ fexac?”exactv (4-1@

is a smooth curve as a function bf; with values smaller
than 7x10 °. The error decreases, when the surface field
goes down[see Fig. 4b)]. Of course, keeping more states
(m=32 herg would improve the accuracy, but the signifi- -15
cant increase of calculation time has kept us from doing it.
In order to find the solvation force t=T,. we first cal-

culate the excess free energy per unit af€gL)=[f(L) FIG. 5. The solvation forcdin units of kgT) calculated for
—fp]L [see Eq.(2.2D)], wheref(L) is the free energy per critical 2D Ising films of widthsL =100 (circles, 124 (squarel
spin for the whole system arfg is the bulk free energy per 150 (diamonds, 174 (triangles, and 200(left closed trianglesas a
spin. f(L) is calculated from the leading eigenvalue of thefunction of the surface fieltH;. The values of the solvation force
effective transfer matri¥Eq. (4.2)], whereasf,, is known  have been multiplied by £0
exactly for the 2D Ising model ai=T, and zero bulk field
[38] and its numerical value is approximately equalfto- strength of the confining walls, that is, for various ;. The
—2.109651 1. Having value$®(L,+2) and f®(L,), we  universal,Hj-independent behavior occurs fgr—0 andl,
approximate the derivative in E€2.22 by a finite difference  —. For our 2D system the two constant wings of the scal-
ing function correspond tb,<10 3L, and tol,>10L,,,
foon=— (L[ f(Lo+2)—f(Lg)]. (4.11)  where byL ,, we denote the largest wall separation for which
the solvation force is measurable. In practige< 10°. In the
We estimate that the difference betwelp, calculated us- first caseH; is very strong and the shape of the OP is quan-
ing the two approaches is of the order of 10 titatively independent o, the boundary layer is saturated,
As another test of the DMRG method, we also calculateand its magnetization iy, =1. For the second case of very
the bulk free energy af,. Keepingm=48 states we per- weak or vanishingd, the OP profile vanishes in the whole
form calculations of the free energy for films with widths up slit. In these two cases the solvation force decreases accord-
to L=300. Next we extrapolate the bulk free energy using ang to the universal power la2.24). Between the two ex-
powerful extrapolation techniqU&9] and forL—«~ we ob-  treme cases of very strong and very wedk two qualita-
tain the valuef,, with the accuracy 10'°. tively different behaviors of the solvation force can be
We calculatef g, as a function ofH, for L=100, 124, observed. The first is for< L/l;<10? and the second is for
150, 174, and 200. The solvation force is attractive for all10?2<L/I;<1.
values ofH; we studied. For a giveh, f,, approaches the (@ 1<L/lI;<1C?. The decay of the solvation force is
(same constant value foH;— andH;—0, but between slowerthan in the universal regime. This slower decay of the
these two value$,, exhibits a sharp maximum located at a solvation force is associated with the OP profile having two
small (less than 0.J, L-dependent value oH,. Figure 5 maxima at some distance from the boundary layers.
presents this most interesting part of the crossover regime.
The absolute value of the solvation force at the maximum is 920
approximately one order of magnitude lesthan atH;
—,0. For example, forL=100, fu(H;=10)~—1.46
X105, whereas Ta(H,~0.1)~ —1.83x 10 °. 015 ¢
In Fig. 6 we plotL2X|f,| as a function of the scaling
variablexy= LH%~L/I1. We obtain an excellent scaling, so oy
we can conclude that the logarithmic part of to the scaling =z %10 |;
function 7, [see Eq(2.28] vanishes al .. This agrees with %
the results for the scaling function @t obtained by Evans

1.5 2.0

0.

T L2
. s are
.o
o
>

-
and Stecki[14] in the special case off;=H =*+x. As 0.05 L

xy—0 andxy—< the scaling functionF.(xy)/kgT. [see . »~°

Eq. (2.27] approaches a constant value which, to good ac- e

curacy, is equal to- w/48—the critical Casimir amplitude 0~0000 5'0 10.0
A1 (Hi=H,=*2,0). The minimum of 7| is reached for ' LH12~.L/11 '

the scaling variablexy,,;;~0.9, i.e., whenl; becomes ap-

proximately equal td.(L/I;~1). . FIG. 6. The modulus of the scaling function of the solvation
From the form of the scaling function we can draw con-force F, [Eq. (2.27] calculated for 2D Ising films of widths be-
clusions about the behavior of the solvation force for variougsween 100 and 200.
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10° i V. SUMMARY AND CONCLUSIONS

We have studied how the magnetization profiles, the ad-
sorption(the excess magnetizatipand the “magnetic” sol-
vation force of 2D Ising films change at bulk criticality as the
surface fieldH,=H, are varied between 0 and. Our pre-
dictions that nonuniversal properties of critical phenomena in
the crossover regime should manifest themselves particularly
strongly in the confined systems have been fully confirmed.

The scaling functions of all the calculated quantities de-
viate substantially from their asymptotic forms at the fixed
points over a wide range ¢, andL. This may be relevant
for experiments. The solvation force as a function Lof
fson{L), should depend on a particular choice of confining
1078 . walls for whichH is usually fixed. We predict that universal

10 100 1000 decay offg(L), through the whole range of wall separa-
tionsL>1, can be found only for very strong surface fields

-2 2
FIG. 7. Log-log plot of the modulus of the solvation force as a SUch thatl;<10"“. For weakerH,; (10" “<I;<1) the sol-

function of the widthL for 2D Ising films subject to weak surface Vation force should decay in a slt_)wer fashion for<L
fieldsH,=H, =0.1. The solid line shows the universal fixed point <10?I1, and for larger wall separations the crossover to a

decay— m/(48kgT)L 2. universal behavior should take place. The most interesting
behavior is predicted for weak surface fields<(l <10?).
Then, for I<L <, the solvation force should decdgster
than at the fixed points, and for larger wall separations a
rossover to decaglower than L ¢ should occur. For still
arger wall separationd, >10?l,, another crossover to the
universal decay law should occlin practice the solvation
force is not measurable for distances which are as large as
his). Finally, for even weakeH; (I,>10?) the universal
ecay should be first observed forx1 <107 2l,, and for
arger wall separations the crossover to tlaster decay
should occur. Again, a second crossover to the slower decay

(b) 107 2<L/I;<1. In this regime the decay of the solva-
tion force isfasterthan in the universal regime. The faster
decay of the solvation force is associated with the OP profil
depending linearly oiid, and having a single maximum in
the center of the film.

For the particular choice of the surface field, i.e., oy
=0.1, the universal power-law decay of the solvation force!
cannot take place in a measurable range of widths of the fil
as shown in Fig. 7. Around the minimum of the absolute

value of the scaling function in Fig. 6, i.e., for the scaling hould be found fot. >1. (thi q b
argument between 0.3 and 3, wefit to a polynomial of the should be found ToL =1, (t Is second crossover may not be
|_measurable in practi¢eThe third crossover to the power law

tenth degree. From the fit we obtain the behavior of the sol-' =] ¢ I I . A o
vation force close to the minimum. Figure 8 shows this be-L occurs for very large wall separationis,>1071,> 10",

havior for particular choice of the surface fiditf =0.1. For and we expect that this behavior is not measurable experi-

: : : mentally.
< . . .
100< L <300 the solvation force is almost independent of L From the behavior of the solvation force one can draw

conclusions about the shape of the OP, since the faster decay
is associated with a single maximum in the center of the film,
and the slower decay is associated with two maxima, each in
the neighborhood of each wall. Moreover, measurements of
the solvation force can provide experimental estimate for the
strength of the surface field,, which cannot be measured
directly and, to our knowledge, by no other method. By mea-
suring the decay of the solvation force and knowlnhgne
can estimate, up to the amplitudg, the strength oH, on
the basis of the discussion described above, that is by com-

. —vlAq . . . .
paringl,~H, andL (in dimensionless unijs

Our results should be applicable to various systems in the
Ising universality class such as magnets, simple fluids, bi-
nary alloys, and binary mixtures with short-ranged wall po-
tentials. We expect a qualitatively similar scenario for the
crossover between the ordinary and normal transitions in
three-dimensional confined systems of analogous geometry.
It is not obvious how this crossover manifests itself in the

FIG. 8. The modulus of the solvation for¢eultiplied by 16) ~ Systems with long-ranged wall potentials. In recent simula-
for weak surface field$i,=H, =0.1 obtained from the fit of the tions of a Lennard-Jones fluid in a 3D slit with long-ranged
scaling function to a polynomial of the 10th degree. The fit is validwall potentials, the critical OP profiles showed features simi-
for 30<L<300. The long-dashed line shows the universal fixed-lar to those we obtained for the weak fiéj, provided the
point decay— 7/ (48kgTo)L 2. amplitude of the attractive wall potentials was snidl0].

10

0 100 200 300
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These amplitudes may correspond to walls, weakly favoringhe critical point, including nonzero bulk field. From our
one of the phases, but more systematic studies are neededanalysis of the errors it follows that the accuracy of this
Our predictions concerning the explicit dependence ofmethod should be even better away from the critical point.
measurable quantities, such as the adsorption and the solva-
tion force, on.the strength of the surf:_ace fiedd com_JId be ACKNOWLEDGMENTS
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